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Abstract

A phenomenological plasticity model has recently been proposed, which combines a smooth yield surface for an
anisotropic solid with a vertex-type plastic flow rule. Both polycrystal plasticity calculations and experiments have
shown the type of non-normality of plastic flow, which is represented by this material model. The plasticity model is
here implemented in a finite element programme and is used to analyze the plane strain tensile test, thus representing
the formation of a neck and the subsequent evolution of shear bands in the neck region. To test the predictions of the
phenomenological plasticity model the tensile test problem is also analyzed by polycrystal plasticity, based on the
Taylor model for either b.c.c. or f.c.c. crystal structure. It is shown that the phenomenological plasticity model gives a
good approximation of the crystal plasticity predictions. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Strain localization; Constitutive equation; Polycrystalline metals; Finite strain; Finite element method

1. Introduction

The use of an abrupt strain path change to determine the shape of the subsequent yield surface in the
vicinity of a current loading point has been proposed by Kuroda and Tvergaard (1999). The abrupt strain
path change forces the stress point to move rapidly along the current yield surface, and when the method
was applied to polycrystal plasticity, based on the Taylor model for either f.c.c. or b.c.c. crystal structure, a
clear non-normality of the small amount of plastic flow was predicted. It was pointed out (Kuroda and
Tvergaard, 1999) that this apparent non-normality must be a vertex-type effect resulting from the Taylor
model, since normality of each of the slip systems involved is an integral part of the crystal plasticity model.
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Thus, part of the explanation of this predicted vertex-type effect is that the proposed method gives a yield
surface larger than that corresponding to a very small offset, in agreement with the assumption always used
in plasticity models in practice. In a recent experimental investigation for an aluminum alloy and a steel
(Kuwabara et al., 2000) the abrupt strain path change was also used, and these experimental measurements
showed a clear non-normality of the plastic strain rate vector relative to the stress path, much like that
predicted in the crystal plasticity studies.

To include these predicted and experimentally observed non-normality effects in a phenomenologi-
cal plasticity model, Kuroda and Tvergaard (2001a) have recently proposed a material model that com-
bines a smooth yield surface for an anisotropic solid with a vertex-type plastic flow rule. The prediction
of plastic instabilities is a very good test of such a material model, since it is well known that here a
vertex has a big effect (Steren and Rice, 1975; Hutchinson and Tvergaard, 1981; Needleman and Tverg-
aard, 1982). Therefore, the new material model was tested on the prediction of the onset of necking in
biaxially stretched metal sheets, using the relatively simple M-K-type model that assumes uniform
straining outside the localized band. It was found that the critical strains predicted by the proposed ma-
terial model are quite realistic, also in the range of equi-biaxial stretching where the normality flow
rule leads to unrealistically late instabilities, and thus the predicted forming limit diagrams are much like
those found for J, corner theory of plasticity (Christoffersen and Hutchinson, 1979) or for crystal plas-
ticity.

For the somewhat different purpose of developing efficient computational procedures, Hughes and
Shakib (1986) have suggested using a load-direction-dependent plastic modulus, and Simo (1987) has
proposed a plasticity model for which a non-associative flow rule on a Mises yield surface is used to
represent a corner-like effect. It is noted that the tensorial form of the plastic flow rule used in the non-
normality theory (Kuroda and Tvergaard, 2001a,b) was motivated by the proposition of Simo (1987), but a
modification was made so that the non-normality (corner-like) behavior is reasonably consistent with that
inherently involved in crystal plasticity. The non-normality theory (Kuroda and Tvergaard, 2001a,b) is not
only simpler than the J, corner theory (Christoffersen and Hutchinson, 1979; also see the review by Neale
(1981)), but can also account for strain-rate sensitivity and plastic anisotropy.

Other corner theories have been proposed, e.g. Gotoh (1985) and Hu et al. (1998). These corner theories
as well as the J, corner theory have incorporated a dependence of the direction of plastic strain rate on that
of stress rate, while Simo’s and our theories have assumed the dependence of the direction of plastic strain
rate on that of total strain rate.

The development of shear bands in a J, corner theory material under plane strain conditions has been
analyzed by Hutchinson and Tvergaard (1981) and by Tvergaard et al. (1981). It was emphasized, based on
the bifurcation study of Hill and Hutchinson (1975), that for a hardening material no shear band instability
will be predicted by classical J, flow theory with a smooth yield surface and normality. Thus, J, corner
theory was used to model the vertex formation known from polycrystal plasticity, and it was found that
shear bands develop. A numerical study for a tensile test specimen, as that of Tvergaard et al. (1981), has
also been carried out for a single crystal directly based on crystal plasticity (Peirce et al., 1983), and also this
study has shown the development of shear bands in the neck region.

In the present paper the development of shear bands in the neck of a plane strain tensile test specimen is
analyzed, with focus on a direct comparison of predictions based on the non-normality theory of plasticity
(Kuroda and Tvergaard, 2001a) and predictions based on crystal plasticity. The non-normality theory is
here implemented in a finite element programme, and the elements used are chosen so that there is not a
strong sensitivity to the angular orientation of shear bands. The crystal plasticity analyses make use of the
Taylor polycrystal model, with many grain orientations represented for each integration point in the finite
element approximation of the field quantities, and thus these computations are much more computationally
heavy than those based on the non-normality theory.
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2. Constitutive models

The results to be presented here are based on either the phenomenological non-normality theory of
plasticity or on crystal plasticity using the Taylor polycrystal model. First, the basic equations of the two
material models are briefly presented here. In the following, the tensors and vectors will be denoted by bold-
face letters: for example a = g;;¢; @ e;, b = b;;e; ® e;, n = n;e;, where ® denotes the tensor product and e; a
Cartesian basis. The following definitions for operation are used: ab = a;bye; ® €;, an = a;;n;e;, a : b = a;b;,
with proper extension to higher order tensors. A superposed dot denotes the (material) time derivative.

2.1. Phenomenological non-normality theory of plasticity

The phenomenological constitutive model considered here is fundamentally the same as that provided in
Kuroda and Tvergaard (2001a,b). The basic equations of the model are given below.

Assuming small elastic and finite plastic deformations, we can express the result of the Eulerian kine-
matics by

D = D + DP = D° + ¢NP, (1)

W=0+W =0+ ¢Q°, (2)
where D and W are the symmetric and anti-symmetric parts of the spatial velocity gradient L
(= 0v;/0x;e; @ e; with v being the velocity of a material particle and x being its current position), the su-
perscripts e and p denote elastic and plastic parts, o is the spin of material substructure, and NP and QF
define the direction of DP and WP, respectively. The scalar-valued quantity @ is a non-negative overstress
function for rate-dependent cases (if we consider rate-independent elasto-plasticity, @ corresponds to a
loading multiplier appearing as (1), where { ) are the Macauley brackets).

With the superposed o denoting an objective rate with respect to the spin @, the elasticity relation is
assumed to be given by Hooke’s law

6=6-06+60=C:D°=C:D—&C: NP, (3)

where ¢ is the Cauchy stress, C is a fourth order elastic moduli tensor which is also assumed to be isotropic,
determined only by Young’s modulus £ and Poisson’s ratio v.

The ‘dynamic’ yield surface is assumed to be given by

f=Je(o,s:,8") — g(e")(@/Po)" =0, (4)

where J, is an equivalent stress for which the functional form may be motivated by a rate-independent
theory of plasticity, s; represents tensor or vector structure variables, P is an equivalent plastic strain, g(eP)
is a strain hardening function which portrays isotropic hardening, m is a rate sensitivity parameter and &, is
a reference value of the overstress function. The expression J, is assumed to be pressure insensitive, i.e.
0J./06 = N" is a deviatoric quantity.

It is obvious that the function @ directly corresponds to the magnitude of the plastic strain rate. From
Eq. (4) the expression for @ is determined as

¢ = do(Je/g)"". (5)

The unit outward normal n to the dynamic yield surface is defined as

o () /]
~ \ d¢ Oc
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where ||(-)|| = (tr](-)(-)])"/* with the superscript T denoting ‘transpose’. We assume a non-linear depen-
dence of the plastic strain rate DP on the total strain rate D, analogous to the expression originally proposed
by Simo (1987). Introducing the notation for a deviatoric quantity, (-)' = (-) — (1/3)(I®]1) : (-), with the
unit tensor I, a direction m normal to n is defined as

~ D'—(n:D')n
™ =D = D] @

Then, the direction NP of the plastic strain rate DP is taken to be
N = n + m, (8)

where 6 is a scalar-valued function to be specified below. Eq. (8) together with Eq. (1) specifies the model
consisting of a smooth dynamic yield surface with a non-normality flow rule, i.e. D = ®NP. The equivalent
plastic strain ¢P is defined as

8p:/épdt:/\/2/—3¢bdt. (9)

As in Kuroda and Tvergaard (2001a,b), 5 is taken to be given by

o0  for o < OP

. . - crit
o=tant, &= { 0, forab > 00, "
with
o n:P | (11)
et
1
i 12
clg/w) +1 .

where ¢ is a coefficient to be determined, which governs non-coaxiality between D’ and DP, and p is the
elastic shear modulus (¢ = E/{2(1 + v)}). The ratio /g represents the elastic modulus normalized by the
current stress level g according to strain hardening. Eq. (10) with Eq. (12) was formulated based on ob-
servations in the polycrystal plasticity predictions (Kuroda and Tvergaard, 2001a). A schematic illustration
of Eq. (10) is shown in Fig. 1. If « is set to be unity (equivalently ¢ = 0), this corresponds to Simo’s original
proposition. The modification shown in Egs. (10) and (12) may seem to be minor, but has a significant effect
on predicted behavior. Although o is only slightly less than unity for usual elastic—viscoplastic materials,
such a small deviation from unity has large effect on predictions of strain localization, as has been shown in
Kuroda and Tvergaard (2001a) and will be shown later in this paper.

The Cauchy stress o is related to the nominal stress IT through IT = JF 'e, where F is the deformation
gradient tensor and J = det F. When we choose the current configuration as a reference, the relationship
between the nominal stress rate IT and the material time derivative of Cauchy stress ¢ is given by

I=6—Lo+ (trL)s, (13)

since we can set F = I, J = 1 and J = tr L. This relation will be used in the finite element formulation shown
below.
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Fig. 1. Illustrations of the non-normality effect adopted in the present plasticity model.

2.2. Crystal plasticity

It is assumed that the elastic strain is small, but the plastic strain may be large. The crystal plasticity
model used here is along the lines presented by Asaro (1979), Nemat-Nasser (1983), etc. In a single crystal,
the velocity gradient L is decomposed into non-plastic and plastic parts,

L=L"+L" (14)
The plastic contribution LP is assumed to arise from slip on a finite number of slip systems,

LP = DP + WP — Z);(a)p(a) + Zj;(a)w(a)’ (15)
where the superscript (o) represents a quantity with respect to the ath slip system, j* is the slip rate of the
ath slip system, DP and WP are the plastic rate of deformation and the plastic spin, respectively, and

p¥ = 1s® o m® + m® @s¥), w® =L@ @m® —m® ©s®), (16a,b)

Here, m® is the unit vector normal to the slip plane and s* is the unit vector representing the slip direction
in the corresponding slip plane.

The contribution L* corresponds to the elastic lattice distortion. The elastic constitutive relation for a
crystal is assumed to be

6 =6-We+eW =C:D", (17)

D' =L +L7), W =L{L -L"), (18a,b)

where C represents the instantaneous crystal elasticity moduli. Denoting the Jaumann rate by (vr, which is
based on the total continuum spin W, it follows from Egs. (14)—(18a,b) that

6=6-Wo+eW=C:D-P, (19a)

P=3"59(C: p + wo — ow®). (19b)
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The evolution laws of s and m® are simply assumed to be

§@ =wW's® @ =wm®. (20a,b)
The slip rate 7 is assumed to be given by the following viscoplastic power law:

) _ an| 22"

Y= VOSgn(T ) W ) TV =po, (21)

where 7, is a reference slip rate, t* is the resolved shear stress and g* is the current hardness of the ath slip
system. The evolution equation for g* is assumed to be

g = Zhaﬂ|?(ﬂ)|~ (22)
B

A specific form of the slip hardening A, will be defined later.

As a model for polycrystals, an extended Taylor model (Asaro and Needleman, 1985) is adopted, in
which the deformation in each grain is taken to be identical to the macroscopic deformation of the con-
tinuum, i.e. in the rate form, L% = L, where L% and L denote the grain and macroscopic velocity gra-
dients, respectively, with the superscript (k) denoting the grain indices (k = 1,...,N; N represents the total
number of grains). Taking the volume fraction of each grain to be identical, the macroscopic stress, 6, is
obtained from averaging the values over the total number of grains; i.e.

Based on this approach, the macroscopic (average) constitutive relation becomes

Qg

—6-W6+6W=C:D-P. (24)
The nominal stress rate IT® in the kth grain with respect to the current configuration is related to ¢*)
through

% =6® — Le"® + (trL)e®. (25)

The volume average version of Eq. (25) is given by

M=06-Lo+ (trL)s. (26)
Substituting Eq. (24) into Eq. (26), we have
M=C:D-P+Ws—6W— L+ (trL)s, (27)

which will be directly used in the finite element formulation as shown later. The average plastic rate of
deformation D' is defined in terms of D*® in the same manner as in Eq. (23), i.e. D' = (1/N) Y, D%,
The macroscopic equivalent plastic strain is defined by & = [((2/ 3)ﬁp : ﬁp)l/ 2d¢. This quantity, &P, will be
used only for a purpose of visualization of computational results.

2.3. Specialization of the models

For the phenomenological non-normality model, the material is assumed to be isotropic in the present
application. Here, J, in Eq. (4) is identified with the Mises-type equivalent stress, i.e. J. = ((3/2)¢’ : c’)]/ 2,
Thus, all tensor or vector structure variables, s;, are excluded. Furthermore, according to the discussion in
Kuroda and Tvergaard (2001b), the plastic spin W? in Eq. (2) vanishes if the material is isotropic. Hence,
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the spin o is identified with the continuum spin W. Thus, the objective rate ¢ in Eq. (3) is identical to the
Jaumann rate ¢ based on W.

Corresponding to the above specialization, polycrystals consisting of randomly oriented grains are
considered for the crystal plasticity computations. Two types of crystal structure are considered: (i) b.c.c.
crystal with 24 slip systems of the types {110}(111) and {112}(111), and (ii) f.c.c. crystal with 12 slip
systems of the type {111}(110). The crystal elasticity moduli tensor C in Eq. (17) is also assumed to be
isotropic, as in the phenomenological non-normality theory.

3. Numerical procedure and problem formulation

In the computational procedure, the constitutive relation of the non-normality theory, Eq. (3), is re-
written by use of a rate-tangent modulus method (Peirce et al., 1984), in order to perform stable numerical
computations (see Kuroda and Tvergaard (2001a,b) for details). The present constitutive equation is non-
linear for the rate of deformation D. In Kuroda and Tvergaard (2001a) an iterative method was used for
solving the non-linear equation. In the present application, the value of D used for constructing N” is taken
to be the value determined in the previous increment without iteration. This is a good approximation as
long as the increments are kept sufficiently small. The same kind of approximation has been employed in
calculations with J, corner theory (Hutchinson and Tvergaard, 1981; Tvergaard et al., 1981). It has been
confirmed that results for the non-normality theory, which will be shown in Section 4, have converged for
reasonably chosen sizes of the increments.

Also for the crystal plasticity model, the rate tangent modulus method (Peirce et al., 1983) is applied to
Egs. (19a) and (19b). Furthermore, to accurately update the slip system vectors s and m*, the following
technique for a finite time increment Az is applied, instead of using the explicit rate forms in Eq. (20a,b), i.e.

Sz@m = AR's”, mffm = AR'm” (28a,b)
with
i 1— tr[(W*Ar)?
AR*:I+Slsz*At+$W*2(At)2, wzz_u7 (29a, b)

which is based on a Taylor series under the assumption that W* is constant during the time increment Az.

An updated Lagrangian finite element formulation is employed. The finite element equation is derived
on the basis of the rate-type principle of virtual work with neglect of the body force effect (e.g. McMeeking
and Rice, 1975; Burke and Nix, 1979; Yamada and Sasaki, 1995)

/ﬁT:SLdV:/qudS, (30)
14 St

where V' and S are the current volume and surface, respectively, dv and dL are the virtual velocity and
virtual velocity gradient, q is the nominal rate of traction per unit current area of surface, and S, is the
surface over which the traction rates are prescribed. In the case of the polycrystal model, the nominal stress
rate IT is replaced by the ‘average’ one, I, in Egs. (26) and (27).

The finite element equation is derived by substituting Eq. (13) with Eq. (3) or Eq. (27) into Eq. (30) and
approximating the velocity field v in terms of finite element shape functions. The term (trL)e in Eq. (13) or
(trL)e in Eq. (27) results in a small non-symmetry of the geometric stiffness matrix in the finite element
equation. But, this is not a disadvantage in the present computations for crystal plasticity, because the
constitutive equation for crystal plasticity with the rate tangent modulus method (Peirce et al., 1983) itself is
inherently non-symmetric.
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Eight node isoparametric plane strain elements with four Gaussian integration points are used. In the
case of the polycrystal model, the Taylor polycrystal model consisting of NV grains is used in each Gaussian
integration point.

A rectangular specimen is subjected to plane strain tension, with x, being the tensile axis. The initial
dimensions of the specimen are 2H, along the x;-direction and 2L, along the x,-direction. Considering
symmetric conditions, only one quadrant of the specimen is analyzed. Thus, the boundary conditions for
the one quadrant are

vp=0 and ¢, =0 onX; =0, (31a)
vw=0 and ¢;=0 onX,=0, (31b)
¢1=¢=0 onX, =Hy+ AH,, (31c)
v2w=U and ¢ =0 onlX, =L, (31d)

where X; denotes the position of a material particle in the initial configuration, U is the prescribed rate of
end-displacement, and AH, represents an initial geometrical imperfection, which is taken to be of the form
(Tvergaard et al., 1981)

AH, = Hy[—¢&, cos (nX>/Ly) + &, cos (mymXs /L)) (32)

with & and &, being imperfection amplitudes and m,, (>1) a wave number. The end-displacement is ob-
tained from U = [Udt. The problem formulation and the finite element mesh for one quadrant of the
specimen to be analyzed are illustrated in Fig. 2. The initial aspect ratio of the specimen is taken to be
Lo/Hy = 3.

For the crystal plasticity calculations, polycrystals consisting of 48 grains, whose orientations have been
randomly chosen, are employed. In Fig. 2, stereographic pole figures of {110} for b.c.c. and of {111} for
f.c.c. are depicted.

The time increment At is determined so that AeP (or AgP) is always less than 0.002 in every integration
point.

4. Numerical results

For the phenomenological non-normality model, the strain hardening function is taken to be given by
g(e?) = ao(1 + 6 /&))", (33)

where oy is the initial tensile yield strength, ¢, is a material constant, and » is a strain hardening exponent.
For the crystal plasticity model, the slip hardening rule is assumed to be

B, n—1
ma=h=to( %) = [l (34a,b)

Ton

where /4 is the initial slip hardening modulus, y, is an accumulated magnitude of slip, and 1, is the initial
value of g for all the slip systems. The following values of the material constants are fixed throughout the
present paper: ay/79 = 2.8, E/19 = 1000, v = 0.3, hy/79 = 30, n = 0.1 and & = 0.0015. The rate of the end-
displacement is prescribed as U = (L + U) with & = &, or §,. Also, the initial imperfection amplitude &, is
always taken to be 0.005.

We first consider the behavior of a specimen with a pure cosine imperfection, where & = 0. The rate
sensitivity parameter is taken to be m = 0.002. The value of ¢, for the non-normality model specified above
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L H, +AH, ,
L, {110} pole figure = {111} pole figure
for b.c.c. (48 grains) for f.c.c. (48 grains)
Xl
(0]

Fig. 2. Problem formulation of plane strain tensile test.

has been determined so that the load-elongation curves up to the attainment of the maximum load for the
b.c.c. polycrystal model and for the non-normality model are close to each other (as seen in Fig. 3). For the
non-normality model, two computations for 67, = 20° with ¢ = 0 and 2 are performed.

Fig. 3 displays curves of the average nominal stress versus end-displacement. Here, the average nominal
stress is defined by I1,,. = P/H,, where P is the tensile load for one quadrant of the specimen, which is
obtained by summation of the nodal forces in the X,-direction at X, = L,. The curve for the non-normality
model with ¢ = 2 is very close to that for the b.c.c. polycrystal model, even in the region where the load
decays significantly. On the other hand, the curve for ¢ = 0 exhibits a slightly lower maximum load, and
deviates gradually from the curve for the b.c.c. model. The load curve for the f.c.c. model is higher than that
for the b.c.c. This difference is attributed to the difference between the Taylor factors for the two crystal
structures. The curve for the b.c.c. model reaches its maximum value, IT,../70 = 4.50, at U/L, = 0.107,
while the curve for the f.c.c. model attains its maximum point, IT,./ty = 4.88, at U/L, = 0.113. However,
the overall shape of the curve for the f.c.c. model is very similar to those for the b.c.c. model and the non-
normality model with ¢ = 2. It is noted that the computation time required for the b.c.c. model is one
hundred and fifty times greater than that required for the non-normality model.

Fig. 4 illustrates deformed meshes at stages where shear bands have developed. Fig. 5 shows contours of
the equivalent plastic strain, which correspond to the deformed meshes in Fig. 4. The patterns of the shear
band formation for the non-normality model with ¢ = 2, the b.c.c. and the f.c.c. are very similar to each
other, although the width of the most narrow section (at the ‘center’ of the specimen) for the f.c.c. is slightly
larger than that in the other two cases. The non-normality model with ¢ = 0, which corresponds to the
original proposal of Simo (1987), predicts a somewhat different pattern of shear band development,
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= 37 Non-normality
] (c=0, epcm= 20°)
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] (c=2,6° =20
1
¥
0 0.05 0.1 0.15 0.2 0.25 0.3

urL,

Fig. 3. Computed curves of tensile load versus end-displacement (&, = 0, m = 0.002).
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Fig. 4. Deformed meshes (&, = 0, m = 0.002): (a) non-normality model with ¢ = 0 and 07, = 20° (U/L, = 0.222), (b) non-normality
model with ¢ = 2 and 0%, = 20° (U/Ly = 0.260), (c) b.c.c. (U/Ly = 0.255) and (d) f.c.c. (U/L, = 0.253).
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Fig. 5. Contours of equivalent plastic strain ¢ for non-normality model, or & for crystal plasticity model (£, = 0, m = 0.002): (a) non-
normality model with ¢ = 0 and 0°. = 20°, (b) non-normality model with ¢ = 2 and 0°. = 20°, (c) b.c.c. and (d) f.c.c. These contours

crit crit

correspond to deformed meshes shown in Fig. 4.

representing two clear shear bands (due to the symmetry condition at X, = 0). It is interesting to note that
the pattern of the shear band formation for the non-normality model with ¢ = 0 is similar to some of the
predictions for J, corner theory reported in Tvergaard et al. (1981, Fig. 5 on p. 129).

In Figs. 3-5, the critical (maximum) angle 67, of DP measured from the yield surface normal n was taken
to be 20° which has been found to be a realistic value (Kuroda and Tvergaard, 2001a). Here, two additional
calculations are performed for 0°. = 5° and 45° with ¢ = 2. All other parameter values are the same as
those employed in Figs. 3-5. Curves of the average nominal stress versus end-displacement for 67, = 5°,
20° and 45° are almost identical, although they are omitted here. Fig. 6 shows deformed meshes and
contours of the equivalent plastic strain at stages where shear bands are visible for 0°. = 5° and 45°. The

crit
intensity of the shear band development for 07, = 45° is almost identical to that for 07, = 20° (shown in

crit
Figs. 4 and 5), while the shear band for 6, = 5° is rather broad and less developed. It is understood from
the findings in Fig. 6 that the choice of the value of ¢ is of primary importance, while the predicted behavior
of strain localization is less sensitive to the value of 67, . The same tendency has been observed in the
previous study based on the Marciniak—Kuczynski approach (see Kuroda and Tvergaard (2001a)).

In Figs. 7 and 8, a different imperfection mode is considered, i.e. & = 0.002 and m,, = 4. All other
parameter values are the same as those employed in Figs. 3-5. The results for the non-normality model with
0%, = 20° and ¢ = 2 and for crystal plasticity models do not differ much from the corresponding results for
&, =0 (in Figs. 4 and 5). By contrast, the result for the non-normality model with ¢ = 0 and 0°. = 20° is
strongly influenced by the change in the imperfection mode, such that a rather complex shear band pattern

crit



8956 M. Kuroda, V. Tvergaard | International Journal of Solids and Structures 38 (2001) 8945-8960

T
1

T T

T
1

1.2

N
e 1.6

(@)

Fig. 6. Deformed meshes and contours of equivalent plastic strain ¢ for non-normality model (&, =0, m = 0.002): (a) ¢ = 2 with
6P, =5° (U/Ly =0.263) and (b) ¢ = 2 with 6%, = 45° (U/L, = 0.260).

crit crit

and a broad shear zone are observed. The formation of the broad shear zone is somewhat similar to the
prediction for J, corner theory reported in Tvergaard et al. (1981, Fig. 7 on p. 131).

Finally, several computations with a larger viscosity have been performed. Computations for the non-
normality model with ¢ =2 and 6%, = 20° and for the crystal plasticity models have been carried out for
m = 0.02. Fig. 9 shows deformed meshes and contours of the equivalent plastic strain at stages where the
neck is well developed. All other parameter values are the same as those employed in Figs. 3-5 and the pure
cosine imperfection with & = 0 is employed again. The results for the non-normality model and for the
crystal plasticity models are very similar, but the width of the most narrow section for the f.c.c. is slightly
wider than the other two cases. It is not clear that actual shear bands have developed here, or the bands are
broader, even at U/Ly = 0.4 for all the cases. The results shown here are consistent with the findings in
many of previous studies, in which plastic instabilities are much delayed by an increase of viscosity.

5. Discussion

The basis for proposing the phenomenological plasticity model that combines a smooth yield surface for
an anisotropic solid with a vertex-type plastic flow rule (Kuroda and Tvergaard, 2001a) was results of
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Fig. 7. Deformed meshes (&, = 0.002, m,, = 4, m = 0.002): (a) non-normality model with ¢ = 0 and 0%, = 20° (U/Ly = 0.204), (b) non-
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normality model with ¢ =2 and 07, = 20° (U/L, = 0.255), (c) b.c.c. (U/Ly = 0.252) and (d) f.c.c. (U/Ly = 0.250).

crit

Taylor model calculations for polycrystal plasticity, when using an abrupt strain path change to determine
subsequent yield surface shapes (Kuroda and Tvergaard, 1999). The material parameters in this phe-
nomenological model were tested by comparison with polycrystal plasticity predictions for the onset of
necking in biaxially stretched metal sheets, according to the relatively simple M—K-type model. Also in the
present paper the predictions of the phenomenological non-normality theory of plasticity has been tested
against predictions for polycrystal plasticity, but here the comparison is made for the more complex
problem of a full numerical solution of a boundary value problem, which involves first necking and then the
formation of shear bands in the neck region, with subsequent evolution of highly localized shear defor-
mations.

The non-normality model with ¢ = 0 corresponds to the model of Simo (1987). The proposition of Simo
(1987) focused on replacing the J, corner theory (Christoffersen and Hutchinson, 1979) by a simplified
model more suitable for large scale computations. In this sense, the similarities between the results for ¢ = 0
(in Figs. 4 and 7) and some results shown in Tvergaard et al. (1981) prove the soundness of the original idea
of Simo. However, to reproduce the physically based crystal plasticity predictions, our improved theory is
very efficient as seen in the previous section. In the present calculations, results which are closely consistent
with the crystal plasticity predictions are obtained for ¢ = 2. It is emphasized that the parameter ¢ gov-
erning the non-coaxiality between D' and DP has been introduced with the physical basis obtained from the
observations in the crystal plasticity predictions (Kuroda and Tvergaard, 2001a). It is noted here that the
strain localization predictions obtained by crystal plasticity are usually somewhat sensitive to a small change
in initial grain orientations as, for example, seen in the M—K-model study (Kuroda and Tvergaard, 2001a).
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Fig. 8. Contours of equivalent plastic strain ¢ for non-normality model, or & for crystal plasticity model (&, = 0.002, m, =4,
m = 0.002): (a) non-normality model with ¢ = 0 and 6%, = 20°, (b) non-normality model with ¢ = 2 and 0%, = 20°, (c) b.c.c. and (d)

crit

f.c.c. These contours correspond to deformed meshes shown in Fig. 7.

Thus, the predicted shear band development may be slightly delayed or accelerated when a different set of
‘random numbers’ or different finite number of grains is employed. It is possible that a slightly different
value of ¢ would be more suitable for such a different case.

The eight noded isoparametric elements used for the present numerical analyses do not in general ac-
count for an abrupt jump in deformation gradient at the interface between shear band and surrounding
material, as is the case for the so-called crossed triangles used in a number of shear band analyses (e.g.
Tvergaard et al., 1981; Peirce et al., 1983). However, predictions based on crossed triangles are very sen-
sitive to the shear band orientation relative to the mesh, while the type of elements used here show less
sensitivity, as has been found in three dimensional analyses of Mathur et al. (1994). This ability to represent
shear bands with an angle of inclination unknown a priori is important for a non-normality theory of
plasticity with the possibility of plastic anisotropy, since the preferred orientation of shear bands is not
known in advance.

The analyses of neck formation and shear band instabilities in polycrystalline materials, using the Taylor
model for either b.c.c. or f.c.c. crystal structure, are presented here for the main purpose of illustrating the
usefulness of predictions based on the phenomenological non-normality theory of plasticity. But these
crystal plasticity analyses do represent new results, which have not been published before. It has been noted
that the computation time required for some of these crystal plasticity analyses is one hundred and fifty
times greater than that required for the non-normality model, which shows the efficiency of the pheno-
menological model. In relation to the present application of the Taylor model, accounting for 48 different
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Fig. 9. Deformed meshes and contours of equivalent plastic strain ¢” for non-normality model, or & for crystal plasticity model

(&, =0, m=0.02): (a) non-normality model with ¢ =2 and 0%, =20° (U/Ly =0.397), (b) b.c.c. (U/Ly=0.393) and (c) f.c.c.
(U/Ly = 0.393).

grain orientations in each integration point, it is emphasized that this gives a reasonable approximation as
long as the grain size is much smaller than the thickness of the tensile specimen, but not for grain sizes
comparable to the thickness.

Although initial isotropy has been assumed for both the crystal plasticity and non-normality models, the
crystal plasticity model naturally accounts for the subsequently induced anisotropy due to ‘texture devel-
opment’. By contrast, the present computations for the non-normality model do not include any effect of
anisotropy. Nevertheless, the agreement was reasonable. But the non-normality model can account for
initial anisotropy, as well as subsequently induced anisotropy, as presented in Kuroda and Tvergaard
(2001a). In the general case of anisotropic material behavior in the non-normality theory of plasticity, it can
be important to incorporate the effect of plastic spin, as has been discussed by Kuroda and Tvergaard
(2001b). In addition, the computations performed in this paper were restricted to consider one quarter of a
rectangular specimen. A main effect of considering only one quarter of the specimen is that we could not
predict a single (unsymmetric) shear band, as is often observed in experiments. The effects of the anisotropy
and the plastic spin, as well as the unsymmetric shear band formation, will be further studied in a forth-
coming paper.
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